【J. Am. Chem. Soc. 】:苯基硼酸修饰柱状聚合物分子刷增强其溶酶体逃逸能力和抗肿瘤功效

  • 112
  • A+
设计良好的纳米给药系统,通过增强渗透性和滞留性(EPR)效应选择性地在肿瘤中积累。然而,纳米材料经过细胞内化,进入溶酶体,由于溶酶体内部的水解酶和酸性条件,载体如果没有即使逃逸就有被降解的风险。因此,设计纳米载体能及时从溶酶体中逃逸出来,以避免药物降解和失活,这一点至关重要。到目前为止,已经发展了几种促进纳米材料溶酶体逃逸的方法。例如,一些带正电荷的物质作为药物载体进入溶酶体,通过静电作用使溶酶体膜的负电荷状态失稳,从而实现溶酶体逃逸。另一种方法是利用具有大量特殊官能团的材料,如聚乙烯亚胺(PEI),通过质子海绵效应使溶酶体破裂。此外,膜融合也是溶酶体逃逸的一种方式,可以使用阳离子脂质体或融合肽来完成,前者通过静电作用与溶酶体膜融合,融合肽在溶酶体的酸性条件下通过构象变化实现膜融合。另一种是被称为光化学内化(PCI)的方法,通过光敏剂在光照下产生活性氧(ROS)来实现溶酶体逃逸,并通过活性氧的损伤作用进一步诱导溶酶体破裂。虽然上述方法可以实现溶酶体逃逸,但它们都有一定的缺陷。有报道表明,在静脉注射后,带正电荷的物质容易产生调理素作用,促进吞噬细胞吞噬颗粒,因此,载体在血液中循环时间短,很少有机会到达肿瘤。此外,由于激发光的组织穿透深度较低,PCI仅适用于浅表肿瘤,而引入光敏剂可能会引起额外的毒性。因此,开发一种有效的纳米材料溶酶体逃逸而不影响其他性能的策略对肿瘤治疗非常重要。

在已发表的研究中,发现苯硼酸PBA通过与各种肿瘤细胞上过表达的唾液酸(SA)残基特异性相互作用,显著增强纳米材料的肿瘤靶向能力,同时增强其对肿瘤的穿透能力。基于以上,南京大学武伟课题组通过将苯基硼酸(PBA)修饰柱状聚合物分子刷 (CPBs) ,极大地促进溶酶体的逸出,并进一步促进其跨细胞转移。此外,以PBA修饰的CPBs为纳米载体,通过pH敏感的酰基腙键结合阿霉素(DOX),获得了20%以上的高载药量和高肿瘤治疗效果。
CPBs是一类具有蠕虫形态的纳米一维聚合物。蠕虫状的形态有利于肿瘤的穿透,而控制良好的化学结构和大小确保了批次到批次的重复性。他们设计的PBA修饰CPBs具有以下几个亮点,包括:(1)PBA组不仅可以促进溶酶体逃逸,还可以增强CPBs的肿瘤靶向能力和肿瘤渗透性;(2)侧链中的两性离子聚羧基甜菜碱(PCB)提供了高水溶性和高抗生物污染能力;(3)侧链中的内聚甲基丙烯酸甘油酯(PGMA)提供了足够的修饰位点和高载药能力。这些优势使前药能够根除在小鼠体内的肿瘤。

1Figure 1. (a) Illustration of the tumor targeting and lysosome escape of BCPB-B-DOX. The abundant PBA groups of BCPB-B-DOX are conductive to tumor targeting and lysosome escape and can greatly improve the antitumor efficacy of the prodrug. (b) Synthesis and drug loading of the CPBs.

2

Figure 2. MTT assays for (a) blank brushes and (b) drug-loaded brushes against CT26 cells after 24 h incubation. (c) IC50 calculated from MTT assay data. (d) Confocal laser scanning microscopy (CLSM) images and (e) mean fluorescence intensities measured by flow cytometry of the CT26 cells after 2 h incubation with the FITC-labeled BCPB-B-DOX and BCPB-DOX at 37 °C, respectively. Scale bars = 20 μm. ***P < 0.001 compared with BCPB-DOX group.


3

Figure 3. (a) Colocalization observation by CLSM of the FITC-labeled brushes (green) and LysoTracker (red) in CT26 cells. Scale bars = 20 μm. (b) Evolution with time of the Pearson’s correlation coefficients between the signals from the FITC-labeled CPBs and LysoTracker. (c) GeneOntology (GO) pathway cellular component (CC) analysis of BCPB-B in CT26 cells.

4

Figure 4. (a) Transcellular transfer study of the FITC-labeled BCPB-B and BCPB in CT26 cells. The left diagram illustrates the general experimental procedures. The cells on coverslips (I) were coincubated with the FITC-labeled CPBs for 4 h, washed with PBS, and imaged by CLSM. Thereafter, coverslips (I) were coincubated with coverslips (II) bearing fresh cells in fresh culture medium for 12 h. After repeating  the above process, coverslips (III) were obtained. The right picture shows the CLSM images of the cells on the coverslips (I), (II), and (III), respectively. Scale bars = 20 μm. (b) CLSM images of the optical slices through the centers of HepG2MCs incubated jointly with the FITC labeled BCPB-B and RBITC-labeled BCPB for different periods (left) and the corresponding fluorescence plate quantification data of the MCs (right). Scale bars = 100 μm.


5

Figure 5. (a) NIRF images of the H22 tumor-bearing mice and (b) mean fluorescence intensities of the tumors at different time points after tailvein injection of the NIR-797-labeled BCPB-B-DOX and BCPB-DOX, respectively. The tumor region is circled by a red dotted line. (c) NIRF images and (d) mean fluorescence intensities of the tumors and organs excised at 168 h after injecting the labeled BCPB-B-DOX and BCPB-DOX. (e) DOX concentrations in plasma versus time after tail vein injection of BCPB-B-DOX and BCPB-DOX. DOX concentrations in different tissues at different time points after tail-vein injection of (f) BCPB-B-DOX and (g) BCPB-DOX; data are presented as mean ± SD (= 3). (h) AUC of DOX accumulation in tumors in BCPB-B-DOX and BCPB-DOX groups. (i) CLSM images of the frozen sections of the tumors from the mice at 96 h after tail-vein injection of the FITC-labeled BCPB-B and BCPB, respectively. Scale bars = 100 μm.

8

Figure 6. (a) Illustration of antitumor study schedule with one dose treatment of 4 mg/kg DOX equivalent. (b) Relative tumor volume and (c) survival rate of the H22 tumor-bearing mice after one dose treatment with different protocols indicated. *P < 0.05, compared with BCPB-DOX group from the 5th day. (d) Illustration of antitumor study schedule with multiple intravenous administrations with each dose of 4 mg/kg DOX equivalent. (e) Relative tumor volume of the H22 tumor bearing mice treated by five doses with different protocols indicated, and photographs of the sarcomas excised from the mice on the 13th day after the first treatment. *P < 0.05, compared with BCPB-DOX group from the 5th day. (f) Body weight change of the H22 tumor bearing mice treated by five doses with different protocols indicated. Data are presented as mean ± SD (n = 8).


weinxin
我的微信
关注我了解更多内容

发表评论

目前评论: